

Welcome to Cloud Native Foundations Workshop!

Cloud Native Foundations Workshop is an educational guide for students
learning cloud-native application development.

This learning guide relates to SUSE Cloud Native Foundations Scholarship Program#1
from Udacity and covers all hands-on exercises#2
in the Cloud Native Foundations Course.

Objective

The main goal of this project is to build a knowledge base and help solve
technical issues outside the scope of the Cloud Native Foundation Course.

Content

The workshop contains exercises and solutions on selected topics that will help you
understand the basics of building, deploying, and maintaining cloud-native applications.
This is NOT a comprehensive guide, but rather a focused look at a few key topics:

	Flask web development best practices.

	App containerization with Docker.

	Releasing applications to a Kubernetes cluster.

	Automation software development workflows with GitHub Actions.

	Using ArgoCD to build reliable CI/CD pipelines.

All the supporting code is in the GitHub repository#3.

Check out the Quick Start section for further information,
including how to set up your workshop environment.

Required Knowledge

	Python 3.

	Flask web development (introductory level).

	Networking (REST, protocols, HTTP methods).

	Git (basic commands, working with remote repositories).

	Linux shell commands.

How to Use:

	Quick Start
	Install Tools

	Obtain Data

	Generate Documentation

	Download Documentation

	How To Use Workshop

	Learning Resources
	Flask

	Docker

	Kubernetes

	GitHub Actions

	ArgoCD

Exercises:

	1. Application Endpoints and Logging
	Preparation

	Exercise 1.1 - Extend Application Endpoints

	Exercise 1.2 - Implement Application Logging

	Additional Resources

	2. Docker for Application Packaging
	Preparation

	Exercise 2.1 - Create Dockerfile

	Exercise 2.2 - Build a Docker Image

	Exercise 2.3 - Push a Docker Container to Docker Hub

	2.4 Pull Image From the Docker Hub

	Exercise 2.5 (Optional) - Containerize Python Application

	Additional Resources

	3. Kubernetes Cluster
	Preparation

	Exercise 3.1 - Create Kubernetes Cluster

	Exercise 3.2 - Deploy Application to the Kubernetes Cluster

	Exercise 3.3 - Define and Deploy Kubernetes Resources

	Additional Resourses

	4. GitHub Actions
	Exercise 4.1 Dockerize Application with GitHub Actions

	Additiona Resources

	5. Continuous Delivery Fundamentals
	Preparation

	Exercise 5.1 - Deploy the Application Using Argo CD

	Configuration Managers

	Exercise 5.2 - Create a Helm Chart with Argo CD

	Exercise 5.3 - Create a YAML Values Files

	Exercise 5.4 - Create Argo CD Applications

	Additional Resources

Solutions:

	1. Application Endpoints and Logging
	Solution 1.1 - Extend Application Endpoints

	Solution 1.2 - Implement Application Logging

	2. Docker for Application Packaging
	Solution 2.1 - Create Dockerfile

	Solution 2.2 - Build a Docker Image

	Solution 2.3 - Push a Docker Container to Docker Hub

	2.4 Pull Image From the Docker Hub

	Solution 2.5 - Dockerize Python Flask Application

	Common Errors & How to Fix Them

	3. Kubernetes Cluster
	Solution 3.1 - Create Kubernetes Cluster

	Solution 3.2 - Deploy Application to the Kubernetes Cluster

	Solution 3.3 - Define and Deploy Kubernetes Resources

	Common Errors & How to Fix Them

	4. GitHub Actions
	Solution 4.1 Dockerize Application with GitHub Actions

	5. Continuous Delivery Fundamentals
	Solution 5.1 - Deploy the Application Using ArgoCD

	Solutions 5.2 - Create a Helm Chart with ArgoCD

	Solution 5.3 - Create a YAML Values Files

	Solution 5.4 - Create ArgoCD Applications

	Common Errors & How to Fix Them

Footnotes

	#1

	https://www.udacity.com/scholarships/suse-cloud-native-foundations-scholarship

	#2

	https://github.com/udacity/nd064_course_1

	#3

	https://github.com/oleksandrsirenko/cloud-native-foundations

Quick Start

Install Tools

	VS Code#1 (or another IDE of your choice)

	Python#2

	Git#3

Obtain Data

	On GitHub, navigate to the workshop repository#4

	Fork the workshop repository.

	On GitHub, navigate to your fork of the workshop repository and copy the URL.

	Clone forked repository to your local machine using git clone command.
It will look like this, with your GitHub username instead of YOUR_USERNAME:

git clone https://github.com/YOUR_USERNAME/cloud-native-foundations

See details on how to fork and clone the repository.#5

Generate Documentation

The documentation is the core of the workshop. You can generate it automatically
with a single line of code and use it locally without internet access. Moreover,
you can edit and improve documentation, contributing to this project, or build
your own knowledge base. To make it possible just follow the instructions:

	Open the workshop folder with IDE and run terminal

	Create the virtual environment: python3 -m venv venv

	Activate the virtual environment: source venv/bin/activate

	Install dependencies: pip install -r requirements.txt

	Change the working directory to docs: cd docs

	Generate a local copy of workshop documentation by running make html

	Open the local copy of the documentation in a web browser: firefox build/html/index.html

Now you have everything you need to get the most out of this workshop.

Download Documentation

You can download the Cloud Native Foundations Workshop docs in the following formats:

	PDF#6

	ePub#7

	Zipped HTML#8

How To Use Workshop

At the moment, the workshop includes two main sections: exercises and solutions.
Follow the instructions in each exercise and try to solve the problems.

Explore the Learning Resources to brush up on the current topic, and feel free to
check out the solutions.

Footnotes

	#1

	https://code.visualstudio.com

	#2

	https://www.python.org/downloads/

	#3

	https://git-scm.com/downloads

	#4

	https://github.com/oleksandrsirenko/cloud-native-foundations

	#5

	https://docs.github.com/en/get-started/quickstart/fork-a-repo

	#6

	https://cloud-native-foundations-workshop.readthedocs.io/_/downloads/en/latest/pdf/

	#7

	https://cloud-native-foundations-workshop.readthedocs.io/_/downloads/en/latest/epub/

	#8

	https://cloud-native-foundations-workshop.readthedocs.io/_/downloads/en/latest/htmlzip/

Learning Resources

Flask

	Flask Quick Start#1

	Flask URL Route Registrations#2

	Flask Logging Documentaion#3

	Logging Facility for Python#4

	Python Basic Logging Tutorial#5

	Python Logging Cookbook#6

	Python Advanced Logging Tutorial#7

	CS50 2020 - Lecture 9 - Flask#8

	Flask Application Video Tutoral from Tech with Tim#9

	Learn Flask for Python - freeCodeCamp Video Tutorial#10

Docker

	Docker Tutorial for Beginners - 3 Hour Video Course#11

	Docker Hub Quickstart#12

	Build a Docker Image#13

	Pushing a Docker Container Image to Doker Hub#14

	How to Build a Containerized Go Application with Docker#15

	Docker Image Pipeline for Go#16

	Build Python Docker Image#17

	How to Serve a Flask App with Amazon Lightsail Containers#18

	Docker Cheet Sheet#19

	How To Install and Use Docker on Ubuntu 20.04#20

	A Beginner-Friendly Introduction to Containers, VMs and Docker#21

Kubernetes

	Kubernetes Tutorial for Beginners - 4 Hour Video Course#22

	Official Kubernetes Tutorials#23

	Kubernetes Hands-on Labs#24

	Vagrant Documentation Resources#25

	Vagrant Cheat Sheet#26

	K3s Lightweight Kubernetes#27

	Stopping and starting Kubernetes cluster#28

	Organizing Cluster Access Using kubeconfig Files#29

	How to Manage Kubernetes With Kubectl#30

	Explore kubectl Cheat Sheet#31

	Kubernetes Config file#32

	Using kubectl to Create a Deployment#33

	How to Delete Pods from a Kubernetes Node#34

	Use Port Forwarding to Access Applications in a Cluster#35

GitHub Actions

	Create Secrets and Configure GitHub Actions#36

	GitHub Actions - 30 Min Video Tutorial#37

	GitHub and Git Foundations - 12 Video Lessons#38

	Get Started with GitHub Actions#39

	Publishing Docker Images Approach from GitHub#40

ArgoCD

	Getting Started with Argo CD#41

	Argo CD Installation Video#42

	Guide To GitOps#43

	Helm Quickstart Guide#44

	Helm Deployment with Argo CD Video Tutorial#45

	CI/CD Guides for DevOps Engineers - 8 Video Playlist#46

Footnotes

	#1

	https://flask.palletsprojects.com/en/2.0.x/quickstart/

	#2

	https://flask.palletsprojects.com/en/2.0.x/api/#url-route-registrations

	#3

	https://flask.palletsprojects.com/en/2.0.x/logging/?highlight=logging

	#4

	https://docs.python.org/3/library/logging.html

	#5

	https://docs.python.org/3/howto/logging.html#logging-basic-tutorial

	#6

	https://docs.python.org/3/howto/logging-cookbook.html#logging-cookbook

	#7

	https://docs.python.org/3/howto/logging.html#logging-advanced-tutorial

	#8

	https://youtu.be/x_c8pTW8ZUc

	#9

	https://youtu.be/mqhxxeeTbu0

	#10

	https://youtu.be/Z1RJmh_OqeA

	#11

	https://youtu.be/3c-iBn73dDE

	#12

	https://docs.docker.com/docker-hub/

	#13

	https://docs.docker.com/engine/reference/commandline/build/

	#14

	https://docs.docker.com/docker-hub/repos/#pushing-a-docker-container-image-to-docker-hub

	#15

	https://docs.docker.com/language/golang/

	#16

	https://codefresh.io/docs/docs/learn-by-example/golang/golang-hello-world/

	#17

	https://docs.docker.com/language/python/build-images/

	#18

	https://aws.amazon.com/getting-started/hands-on/serve-a-flask-app/

	#19

	https://www.docker.com/sites/default/files/d8/2019-09/docker-cheat-sheet.pdf

	#20

	https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-20-04

	#21

	https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/

	#22

	https://youtu.be/X48VuDVv0do

	#23

	https://kubernetes.io/docs/tutorials/

	#24

	https://katacoda.com/courses/kubernetes/

	#25

	https://www.vagrantup.com/docs

	#26

	https://linuxacademy.com/site-content/uploads/2017/12/vagrant-cheatsheet-Linux-Academy.pdf

	#27

	https://k3s.io/

	#28

	https://www.ibm.com/docs/en/fci/1.0.3?topic=kubernetes-stopping-starting-cluster

	#29

	https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

	#30

	https://rancher.com/learning-paths/how-to-manage-kubernetes-with-kubectl/

	#31

	https://kubernetes.io/docs/reference/kubectl/cheatsheet/

	#32

	https://community.suse.com/posts/cluster-this-is-your-admin-do-you-read

	#33

	https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/

	#34

	https://www.bluematador.com/blog/safely-removing-pods-from-a-kubernetes-node

	#35

	https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

	#36

	https://docs.docker.com/ci-cd/github-actions/

	#37

	https://youtu.be/R8_veQiYBjI

	#38

	https://youtube.com/playlist?list=PL0lo9MOBetEHhfG9vJzVCTiDYcbhAiEqL

	#39

	https://docs.github.com/en/actions

	#40

	https://docs.github.com/en/actions/guides/publishing-docker-images

	#41

	https://argo-cd.readthedocs.io/en/stable/getting_started/

	#42

	https://www.youtube.com/watch?v=TJrSM31Jj_8

	#43

	https://www.weave.works/technologies/gitops/

	#44

	https://helm.sh/docs/intro/quickstart/

	#45

	https://www.youtube.com/watch?v=VyuVFtp2-2M&t=26s

	#46

	https://youtube.com/playlist?list=PLHq1uqvAteVsSsrnZimHEf7NJ1MlRhQUj

1. Application Endpoints and Logging

 2. Docker for Application Packaging

2. Docker for Application Packaging

 3. Kubernetes Cluster

3. Kubernetes Cluster

 4. GitHub Actions

4. GitHub Actions

 5. Continuous Delivery Fundamentals

5. Continuous Delivery Fundamentals

 1. Application Endpoints and Logging

1. Application Endpoints and Logging

Note

Make sure you have prepared the environment for this task.

Solution 1.1 - Extend Application Endpoints

To extend Python Flask application with /status and /metrics
endpoints, follow these steps:

	Open app.py file in exercises/python-helloworld folder.

	Register routes "/status" and "/metrics" to the app route.

	Add the logic to those routes, according to the examples below:

@app.route("/status")
def status():
 response = app.response_class(
 response=json.dumps({"result": "OK - healthy"}),
 status=200,
 mimetype="application/json"
)

 return response

@app.route("/metrics")
def metrics():
 response = app.response_class(
 response=json.dumps(
 {
 "status": "success",
 "code": 0,
 "data": {"UserCount": 140, "UserCountActive": 23}
 }
),
 status=200,
 mimetype="application/json"
)

 return response

Watch the video#1 to understand the API Endpoints solution in more detail.

 2. Docker for Application Packaging

2. Docker for Application Packaging

Note

Make sure you have prepared the environment for this task.

Solution 2.1 - Create Dockerfile

	Create Dockerfile: touch Dockerfile

	Open the Dockerfile.

	Create layers due to task:

syntax=docker/dockerfile:1

FROM golang:1.16-alpine

WORKDIR /go/src/app

ADD . .

RUN go mod init

RUN go build -o go-helloworld

EXPOSE 8080

CMD ["./go-helloworld"]

	Save changes

Solution 2.2 - Build a Docker Image

	Make sure you are in the /exercises/go-helloworld/ directory.

	Build a Docker image using the prompt command:

docker build -t go-helloworld .

Solution 2.3 - Push a Docker Container to Docker Hub

Note

To push a Docker container to Docker Hub,
you need to have a Docker Hub account#1

Follow these steps to push a Docker container to Docker Hub:

	Run a Docker image as a container: docker run -p 8080:8080 --name go_moriarty -d go-helloworld

	Verify if the application at: http://127.0.0.1:8080/

	Login to the Docker Hub: docker login -u "YOUR_DOCKERHUB_USERNAME" -p "YOUR_DOCKERHUB_PASSWORD" docker.io

	Tag the image: docker tag go-helloworld YOUR_DOCKERHUB_USERNAME/go-helloworld:v1.0.0

	Push the image to the DockerHub repo: docker push YOUR_DOCKERHUB_USERNAME/go-helloworld:v1.0.0

Feel free to check the video Docker for Application Packaging#2

 3. Kubernetes Cluster

3. Kubernetes Cluster

Note

Make sure you have prepared the environment for this task.

Solution 3.1 - Create Kubernetes Cluster

Start Kubernetes Cluster

	Open Vagrant shell: vagrant ssh

	Get k3s: curl -sfL https://get.k3s.io | sh

	Check nodes: kubectl get no

Warning

To stop the Kubernetes cluster, run the command as the root user: shutdown -h now

Solution 3.2 - Deploy Application to the Kubernetes Cluster

	Run the app at a cluster: kubectl run POD_NAME --image=DOCKER_IMAGE_PATH

	Check the pod status using one of the following commands: kubectl get pods

	Deploy the app to the cluster directly from the Docker Hub: kubectl create deployment DEPLOYMENT_NAME --image=docker.io/DOCKERHUB_USERNAME/DOKER_IMAGE_NAME:TAG

	Access the application on localhost: kubectl port-forward POD_NAME 8080:8080

Kubeconfig

	K3s stores the kubeconfig file under /etc/rancher/k3s/k3s.yaml

	API server - https://127.0.0.1:8080

	Authentication mechanism - username (admin) and password

Useful kubectl Commands

	Get the control plane and add-ons
endpoints: kubectl cluster-info

	Get all the nodes in the cluster: kubectl get nodes

	Get extra details about the nodes: kubectl get nodes -o wide

	Get all the configuration details about the node: kubectl describe node NODE_NAME

	Get basic pods information: kubectl get pods

	Check the detailed information of a particular pod: kubectl describe pod POD_NAME

	Delete pod: kubectl delete pod POD_NAME

Find out more in kubectl Cheat Sheet#1

Explore kubectl predefined assets in the video tutorial#2

 4. GitHub Actions

4. GitHub Actions

Warning

To securely access the Docker Hub repository, you need to create two secrets in your GitHub
account: DOCKER_HUB_USERNAME and DOCKER_HUB_ACCESS_TOKEN respectively. Read more here#1.

Solution 4.1 Dockerize Application with GitHub Actions

To Dockerize your application using GitHub Actions follow these steps:

	Open the docker-build.yaml file under the solution/ directory.

	Edit this file to meet your needs (correct app name, version, etc.).

	Save changes you have made.

	On GitHub, open your fork of the workshop repository.

	Put docker-build.yaml to the .github/workflows directory to execute.

The docker-build.yaml for Python Flask application should look like this:

This is a basic workflow to help you get started with Actions

name: Docker Build and Push

Controls when the action will run. Triggers the workflow on push or pull request
events but only for the master branch
on:
 push:
 branches: [master]
 pull_request:
 branches: [master]

A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
 # This workflow contains a single job called "build"
 build:
 # The type of runner that the job will run on
 runs-on: ubuntu-latest

 # Steps represent a sequence of tasks that will be executed as part of the job
 steps:
 -
 name: Check Out Repo
 uses: actions/checkout@v2
 -
 name: Set up QEMU
 uses: docker/setup-qemu-action@v1
 -
 name: Login to DockerHub
 uses: docker/login-action@v1
 with:
 username: ${{ secrets.DOCKER_HUB_USERNAME }}
 password: ${{ secrets.DOCKER_HUB_ACCESS_TOKEN }}
 -
 name: Set up Docker Buildx
 uses: docker/setup-buildx-action@v1
 -
 name: Build and push
 uses: docker/build-push-action@v2
 with:
 context: ./
 file: ./Dockerfile
 platforms: linux/amd64
 push: true
 tags: ${{ secrets.DOCKER_HUB_USERNAME }}/python-helloworld:latest

Watch the solution#2 video lesson.

 5. Continuous Delivery Fundamentals

5. Continuous Delivery Fundamentals

Note

The preparation steps are the same as in the exercise 3. Kubernetes Cluster
Make sure you have prepared the environment

Solution 5.1 - Deploy the Application Using ArgoCD

Quick Start with ArgoCD

	Open Vagrant shell using command:

vagrant ssh

	Create namespace:

kubectl create namespace argocd

	Install ArgoCD:

kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/stable/manifests/install.yaml

	Check ArgoCD pods:

kubectl get po -n argocd

	Get all application services:

kubectl get svc -n argocd

Create and Apply YAML Manifests

Warning

Do not forget to change GITHUB_USERNAME inside the YAML files below to your GitHub user name!

argocd-server-nodeport.yaml

	Create a file within the vim shell: vim argocd-server-nodeport.yaml

	Write the manifest:

apiVersion: v1
kind: Service
metadata:
 annotations:
 labels:
 app.kubernetes.io/component: server
 app.kubernetes.io/name: argocd-server
 app.kubernetes.io/part-of: argocd
 name: argocd-server-nodeport
 namespace: argocd
spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 8080
 nodePort: 30007
 - name: https
 port: 443
 protocol: TCP
 targetPort: 8080
 nodePort: 30008
 selector:
 app.kubernetes.io/name: argocd-server
 sessionAffinity: None
 type: NodePort

	Escape the vim shell: esc

	Save changes: :wq

	Check the manifest: cat argocd-server-nodeport.yaml

	Apply the manifest: kubectl apply -f argocd-server-nodeport.yaml

nginx-alpine.yaml

	Create a file within the vim shell: vim nginx-alpine.yaml

	Write the manifest:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: nginx-alpine
 namespace: argocd
spec:
 destination:
 namespace: default
 server: https://kubernetes.default.svc
 project: default
 source:
 path: solutions/kubernetes/manifests
 repoURL: https://github.com/GITHUB_USERNAME/cloud-native-foundations
 targetRevision: HEAD
 # Sync policy
 syncPolicy: {}

	Escape the vim shell: esc

	Save changes: :wq

	Check if everything was written correctly: cat nginx-alpine.yaml

	Apply created yaml manifest:: kubectl apply -f nginx-alpine.yaml

After preparing all the required manifests, check the application using the command:

kubectl get application -n argocd

Use ArgoCD in your browser at

	http://192.168.50.4.30007

	http://192.168.50.4.30008

Solutions 5.2 - Create a Helm Chart with ArgoCD

The Helm chart is defined in the Chart.yaml file, which contains the
API version, name and version of the chart:

apiVersion: v1
name: nginx-deployment
description: Install Nginx deployment manifests
keywords:
 - nginx
version: 1.0.0
maintainers:
 - name: GITHUB_USERNAME

Solution 5.3 - Create a YAML Values Files

An example of the values.yaml file:

namespace:
 name: demo
service:
 port: 8111
 type: ClusterIP
image:
 repository: nginx
 tag: alpine
 pullPolicy: IfNotPresent
replicaCount: 3
resources:
 requests:
 cpu: 50m
 memory: 256Mi
configmap:
 data: "version: alpine"

The above configuration represents the default parameters of application
deployment if it is not overwritten by a different values file.

Below is an example of the values-prod.yaml file, which will
override the default parameters:

namespace:
 name: prod
service:
 port: 80
 type: ClusterIP
image:
 repository: nginx
 tag: 1.17.0
 pullPolicy: IfNotPresent
replicaCount: 2
resources:
 requests:
 cpu: 70m
 memory: 256Mi
configmap:
 data: "version: 1.17.0"

Solution 5.4 - Create ArgoCD Applications

ArgoCD application CRD for the nginx-prod.yaml deployment:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: nginx-prod
 namespace: argocd
spec:
 destination:
 namespace: default
 server: https://kubernetes.default.svc
 project: default
 source:
 helm:
 valueFiles:
 - values-prod.yaml
 path: helm
 repoURL: https://github.com/GITHUB_USERNAME/cloud-native-foundations/tree/main/solutions/argocd
 targetRevision: HEAD

Note

The nginx-staging.yaml, values-staging.yaml, and nginx-prod.yaml files can be found
in the project repository solutions/helm/nginx-deployment#1

Common Errors & How to Fix Them

Error Validating Data

Pay attention when copying/pasting to build manifests! The letter a
on the first line of a created manifest is usually lost after the file is saved.
This error turns apiVersion into piVersion and raises the following error:

Error

error: error validating "argocd-server-nodeport.yaml": error validating data:
apiVersion not set; if you choose to ignore these errors, turn validation off with --validate=false

To fix Error Validating Data, open the yaml file you working on and correct the typo
by turning piVersion back to apiVersion.

Footnotes

	#1

	https://github.com/oleksandrsirenko/cloud-native-foundations/tree/main/solutions/helm/nginx-deployment

 Index

Index

_static/minus.png

_static/plus.png

_static/images/cloud-native-rtd.png
8 welcome to Cloud Native X +

O & https://cloud-native-foundatio op.readthedocs.io/en/latest/

» Welcome to Cloud Native Foundations Workshop!

Welcome to Cloud Native Foundations Workshop!

HOWTO USE:
Cloud Native Foundations Workshop is an educational guide for students learning cloud-native

application development.

Quick Start

This learning guide relates to
and covers all in the Cloud Native Foundations Course.

from Udacity

EXERCISES:

Objective

The main goal of this project is to build a knowledge base and help solve technical issues outside
the scope of the Cloud Native Foundation Course.

4. GitHub Ac

5. Continuous Del

SOLUTIONS: Content

1. Application Endpoint:

The workshop contains exercises and solutions on selected topics that will help you understand the
basics of building, deploying, and maintaining cloud-native applications. This is NOT a
comprehensive guide, but rather a focused look at a few key topics:

2. Docker for Applic
3. Kut i
4.GitHub Ac

Flask web development best practices.

App containerization with Docker.

Releasing applications to a Kubernetes cluster.

Automation software development workflows with GitHub Actions.
Using ArgoCD to build reliable CI/CD pipelines.

5. Continuous Del

All the supporting code is in the
Check out the section for further information, including
Required Knowledge

« Python 3
« Flask web development (introductory level).

_static/images/cloud-native-rtd-2.png
i@ 2. Docker for Applicatio:

O B https://cloud-native-foundations-workshop.readthedocs

» 2. Docker for Application Packaging

2. Docker for Application Packaging

HOW TO USE:

Quick Start

EXERCISES: ; > How to Get Started with
Docker
»

Peter McKee, vocker

© 2. Docker for Application Packaging
Preparation
Exercise 2.1 - Create Dockerfile
Exercise 2.2 - Build a Docker Image W @pmckee

Exercise 2.3 - Push a Docker
Container to Docker Hub

2.4 Pull Image From the Docker
Hub Watch on (EBYoulube

Exercise 2.5 (Optional) -
Containerize Python Application

» In this exercise, you will use a minimal Go application that looks like this:
Additional Resources

3. Kut
package main
4.GitHub Ac
amport (
5. Continuous Del o
"net/nttp"
SOLUTIONS:)

func helloWorld(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Sherlock Holmes sat silently...")
1

3. Kubern

func main() {
4. GitHub http.HandleFunc("/", hellokorld)

http.ListenAndServe(":8088", nil)
ntinuous Del undamen 1

Your tasks are to containerize this Go application and push it to Docker Hub. But before you get
started, we highly recommend watching the at the top of the page and

_static/images/cloud-native-rtd-3.png
i@ 3. Kubernetes Cluster —

C 8 https://cloud-native-foundations-workshop.readthedocs.io/en/latest/doc_exercises/ku’ €% 9 @

» 3. Kubernetes Cluster

3. Kubernetes Cluster
HOW TO USE:

Quick S

Learning Resources

EXERCISES:
1 Endpoint:
ker for Application Packaging
. Kubernetes Cluster
Preparation

Exercise 3.1 - Create Kubernetes
Cluster

Exercise 3.2 - Deploy Application to
the Kubernetes Cluster (

Exercise 3.3 - Define and Deploy
Kubernetes Resources Watch on YouTube ‘

Additional Resourses

4. GitHub Actior In the previous exercise, you put the Go app into a Docker container and pushed it to the Docker
o Dl ELna Hub repository. So now you need to deploy this application from your Docker Hub repository to

your local Kubernetes cluster.

SOLUTIONS:

ation Endpoints and Lo

This exercise is slightly different from the original one - it was modified according to more
practical use cases and connect student progress from the previous lessons

4. GitHub Actions

Continuous Delivery Fundament Preparation

Install VirtualBox and Vagrant

1. Install VirtualBox: sudo apt install virtualbox
8 Read the Docs 2. Install Vagrant: | sudo apt-get update &2 sudo apt-get install vagrant

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cloud Native Foundations Workshop!

 		
 Quick Start

 		
 Install Tools

 		
 Obtain Data

 		
 Generate Documentation

 		
 Download Documentation

 		
 How To Use Workshop

 		
 Learning Resources

 		
 Flask

 		
 Docker

 		
 Kubernetes

 		
 GitHub Actions

 		
 ArgoCD

 		
 1. Application Endpoints and Logging

 		
 Preparation

 		
 Exercise 1.1 - Extend Application Endpoints

 		
 Exercise 1.2 - Implement Application Logging

 		
 Additional Resources

 		
 2. Docker for Application Packaging

 		
 Preparation

 		
 Exercise 2.1 - Create Dockerfile

 		
 Exercise 2.2 - Build a Docker Image

 		
 Exercise 2.3 - Push a Docker Container to Docker Hub

 		
 2.4 Pull Image From the Docker Hub

 		
 Exercise 2.5 (Optional) - Containerize Python Application

 		
 Additional Resources

 		
 3. Kubernetes Cluster

 		
 Preparation

 		
 Install VirtualBox and Vagrant

 		
 Up Virtual Machine

 		
 Useful Vagrant Commands

 		
 Exercise 3.1 - Create Kubernetes Cluster

 		
 Exercise 3.2 - Deploy Application to the Kubernetes Cluster

 		
 Exercise 3.3 - Define and Deploy Kubernetes Resources

 		
 Additional Resourses

 		
 4. GitHub Actions

 		
 Exercise 4.1 Dockerize Application with GitHub Actions

 		
 Additiona Resources

 		
 5. Continuous Delivery Fundamentals

 		
 Preparation

 		
 Exercise 5.1 - Deploy the Application Using Argo CD

 		
 Configuration Managers

 		
 Exercise 5.2 - Create a Helm Chart with Argo CD

 		
 Exercise 5.3 - Create a YAML Values Files

 		
 Exercise 5.4 - Create Argo CD Applications

 		
 Additional Resources

 		
 1. Application Endpoints and Logging

 		
 Solution 1.1 - Extend Application Endpoints

 		
 Solution 1.2 - Implement Application Logging

 		
 2. Docker for Application Packaging

 		
 Solution 2.1 - Create Dockerfile

 		
 Solution 2.2 - Build a Docker Image

 		
 Solution 2.3 - Push a Docker Container to Docker Hub

 		
 2.4 Pull Image From the Docker Hub

 		
 Useful Docker Commands

 		
 Solution 2.5 - Dockerize Python Flask Application

 		
 Common Errors & How to Fix Them

 		
 Permission Denied Error

 		
 File Not Found Error

 		
 3. Kubernetes Cluster

 		
 Solution 3.1 - Create Kubernetes Cluster

 		
 Start Kubernetes Cluster

 		
 Solution 3.2 - Deploy Application to the Kubernetes Cluster

 		
 Kubeconfig

 		
 Useful kubectl Commands

 		
 Solution 3.3 - Define and Deploy Kubernetes Resources

